R300 - Advanced Econometric Methods PROBLEM SET 1 - SOLUTIONS

Due by Mon. October 12

1. Let y and x be scalar random variables. Show that the following hold.
(i) $\operatorname{cov}(E(y \mid x), y-E(y \mid x))=0$.
(ii) $\operatorname{var}(y-E(y \mid x)) \leq \operatorname{var}(y)$.
(iii) $\operatorname{var}(y-E(y \mid x))=\operatorname{var}(y)$ when y and x are independent.
(i) Let $\varepsilon=y-E(y \mid x)$. Then we need to show that

$$
\operatorname{cov}(E(y \mid x), \varepsilon)=0
$$

By definition of the covariance in the first step, the fact that $E(\varepsilon)=0$ in the second step, and the law of iterated expectations and the fact that $E(\varepsilon \mid x)=0$ in the third and fourth step, we have

$$
\begin{aligned}
\operatorname{cov}(E(y \mid x), \varepsilon) & =E(E(y \mid x) \varepsilon)-E(E(y \mid x)) E(\varepsilon) \\
& =E(E(y \mid x) \varepsilon) \\
& =E(E(y \mid x) E(\varepsilon \mid x)) \\
& =0
\end{aligned}
$$

(ii) We have, using the law of total variance and the fact that $E(\varepsilon \mid x)=0$ (and so has zero variance)

$$
\begin{aligned}
\operatorname{var}(\varepsilon) & =\operatorname{var}(E(\varepsilon \mid x))+E(\operatorname{var}(\varepsilon \mid x)) \\
& =E(\operatorname{var}(\varepsilon \mid x)) \\
& =E(\operatorname{var}(y \mid x)) \\
& \leq E(\operatorname{var}(y \mid x))+\operatorname{var}(E(y \mid x)) \\
& =\operatorname{var}(y)
\end{aligned}
$$

(iii) This is immediate from the solution to (ii). By independence, $E(y \mid x)=E(y)$ and so $\operatorname{var}(E(y \mid x))=0$ from which the equality follows.
2. Show that the following functions are probability mass/density functions and compute their first two moments.
(i) $f(x)=a x^{a-1}, x \in(0,1)$ and $a>0$.
(ii) $f(x)=n^{-1}, x=1,2, \ldots, n$ for n a positive integer.
(iii) $f(x)=(3 / 2)(x-1)^{2}, x \in(0,2)$.
(i) It suffices to show that f is non-negative and integrates to one. Here, f is clearly non-negative as $a>0$ and x is positive. Further,

$$
\int_{0}^{1} f(x) d x=a \int_{0}^{1} x^{a-1} d x=\left.x^{a}\right|_{0} ^{1}=1 .
$$

So f is a density function.
Next, the first two moments are

$$
\int_{0}^{1} x\left(a x^{a-1}\right) d x=a \int_{0}^{1} x^{a} d x=\frac{a}{1+a}, \quad \int_{0}^{1} x^{2}\left(a x^{a-1}\right) d x=\frac{a}{2+a},
$$

by straightforward integration.
(ii) Here, f is the uniform mass function on the interval $[1,2, \ldots, n]$), i.e., it places mass n^{-1} on each of the n masspoints. So, clearly, mass is positive and sums up to one over the support.

The first two moments are

$$
\sum_{i=1}^{n} i / n=(n+1) / 2, \quad \sum_{i=1}^{n} i^{2} / n=(n+1)(2 n+1) / 6
$$

(iii) That f is a pdf is easy to see. The integral is straightforward as f is polynomial (as in (i)),

$$
\frac{3}{2} \int_{0}^{2}\left(x^{2}+1-2 x\right) d x=\left.\frac{3}{2}\left(\frac{x^{3}}{3}+x-x^{2}\right)\right|_{0} ^{2}=1
$$

The first and second moments are 1 and $8 / 5$, respectively.
3. Suppose that, for a scalar random variable x,

$$
F(v)=P(x \leq v)
$$

is continuous and strictly increasing in v. Define the random variable $y=F(x)$. Derive the distribution of y.

Let $G(v)=P(y \leq v)$. Then, for any $v \in[0,1]$, we have

$$
G(v)=P(F(x) \leq v)=P\left(x \leq F^{-1}(v)\right)=F\left(F^{-1}(v)\right)=v
$$

So,

$$
G(v)= \begin{cases}0 & \text { if } v<0 \\ v & \text { if } v \in[0,1) \\ 1 & \text { if } v \geq 1\end{cases}
$$

This is the uniform distribution on the interval $[0,1]$.
4. For each of the cases below, show that the score is mean zero and derive the efficiency bound for θ.
(i) Binomial with parameters (n, θ).
(ii) Exponential with mean $1 / \theta$.
(iii) Exponential with mean θ.
(i) The sum of m independent Bernoulli random variables, each with success probability θ, is Binomial (m, θ). The mass function at $x=0,1,2 \ldots$ equals

$$
f_{\theta}(x)=\binom{m}{x} \theta^{x}(1-\theta)^{m-x}
$$

So,

$$
\log f_{\theta}(x)=\log \binom{m}{x}+x \log \theta+(m-x) \log (1-\theta)
$$

Therefore,

$$
\frac{\partial \log f_{\theta}(x)}{\partial \theta}=\frac{x}{\theta}-\frac{m-x}{1-\theta}=\frac{x-m \theta}{\theta(1-\theta)}
$$

and

$$
\frac{\partial^{2} \log f_{\theta}(x)}{\partial \theta^{2}}=-\frac{x}{\theta^{2}}-\frac{m-x}{(1-\theta)^{2}}
$$

Now, $E_{\theta}(x)=m \theta$ and $\operatorname{var}_{\theta}(x)=m \theta(1-\theta)$. Note that the score has mean zero. Its variance is

$$
E_{\theta}\left(\frac{\partial \log f_{\theta}(x)}{\partial \theta} \frac{\partial \log f_{\theta}(x)}{\partial \theta}\right)=\frac{\operatorname{var}_{\theta}(x)}{\theta^{2}(1-\theta)^{2}}=\frac{m}{\theta(1-\theta)}
$$

Equivalently,

$$
-E_{\theta}\left(\frac{\partial^{2} \log f_{\theta}(x)}{\partial \theta^{2}}\right)=E_{\theta}\left(\frac{x}{\theta^{2}}+\frac{m-x}{(1-\theta)^{2}}\right)=\frac{m}{\theta}+\frac{m}{1-\theta}=\frac{m}{\theta(1-\theta)} .
$$

The efficiency bound then is $\theta(1-\theta) /(n m)$.
(ii) The exponential has

$$
f_{\theta}(x)=\theta e^{-x \theta}
$$

for $x \geq 0$. Here,

$$
\log f_{\theta}(x)=\log \theta-x \theta
$$

and so

$$
\frac{\partial \log f_{\theta}(x)}{\partial \theta}=\frac{1}{\theta}-x, \quad \frac{\partial^{2} \log f_{\theta}(x)}{\partial \theta^{2}}=-\frac{1}{\theta^{2}} .
$$

The efficiency bound is θ^{2} / n.
(iii) In this parametrization the exponential has

$$
f_{\theta}(x)=\frac{1}{\theta} e^{-x / \theta}
$$

for $x \geq 0$. Here,

$$
\log f_{\theta}(x)=-\log \theta-\frac{x}{\theta} .
$$

Thus,

$$
\frac{\partial \log f_{\theta}(x)}{\partial \theta}=-\frac{1}{\theta}+\frac{x}{\theta^{2}} \quad \frac{\partial^{2} \log f_{\theta}(x)}{\partial \theta^{2}}=\frac{1}{\theta^{2}}-\frac{2 x}{\theta^{3}} .
$$

The information becomes

$$
1 / \theta^{2}
$$

The efficiency bound is θ^{2} / n.

